自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (5)
  • 论坛 (2)
  • 收藏
  • 关注

原创 年记2020,新年快乐

2020一切变得忙了起来。第一次准备写年记还是12月31日,然后一直拖到了今天,除夕夜。然而今天的代码依然没有写完,写完年记还是要继续干活。 2020年做了很多事,做了一个让自己满意的本科毕业设计,考上了研究生,交到了新的朋友,还通过辅导考研和代写程序实现了一定程度的财富自由。这一年的编程技术有了很大的提升,一年前的我基本只会用C++写算法题,会用python做一些简单的数据分析和深度学习。现在则掌握了很多实际项目中需要用到的东西:docker,scrapy-redis,django,spring boot

2021-02-11 19:55:44 117 1

python爬取淘宝商品信息

import requests from bs4 import BeautifulSoup import bs4 def getHTMLText(url): try: r = requests.get(url, timeout=30) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "" def fillUnivList(ulist, html): soup = BeautifulSoup(html, "html.parser") for a in soup.find('tbody').children: if isinstance(a, bs4.element.Tag): tds = a('td') ulist.append([tds[0].string, tds[1].string, tds[2].string, tds[3].string]) def printUnivList(ulist, num): print("{:^10}\t{:^6}\t{:^6}\t{:^16}".format("排名","学校名称","地区","总分")) for i in range(num): u=ulist[i] print("{:^10}\t{:^6}\t{:^6}\t{:^16}".format(u[0],u[1],u[2],u[3]))

2018-01-26

调用sklearn库的K-Means聚类分析实例

#class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm=’auto’) #参数: #(1)对于K均值聚类,我们需要给定类别的个数n_cluster,默认值为8; #(2)max_iter为迭代的次数,这里设置最大迭代次数为300; #(3)n_init设为10意味着进行10次随机初始化,选择效果最好的一种来作为模型; #(4)init=’k-means++’ 会由程序自动寻找合适的n_clusters; #(5)tol:float形,默认值= 1e-4,与inertia结合来确定收敛条件; #(6)n_jobs:指定计算所用的进程数; #(7)verbose 参数设定打印求解过程的程度,值越大,细节打印越多; #(8)copy_x:布尔型,默认值=True。当我们precomputing distances时,将数据中心化会得到更准确的结果。如果把此参数值设为True,则原始数据不会被改变。如果是False,则会直接在原始数据上做修改并在函数返回值时将其还原。但是在计算过程中由于有对数据均值的加减运算,所以数据返回后,原始数据和计算前可能会有细小差别。 #属性: #(1)cluster_centers_:向量,[n_clusters, n_features] # Coordinates of cluster centers (每个簇中心的坐标??); #(2)Labels_:每个点的分类; #(3)inertia_:float,每个点到其簇的质心的距离之和。

2018-01-26

2019蓝桥杯.zip

2019年蓝桥杯B组省赛C/C++试题,包括PDF文件、A-J题全部试题的图片、数据等。试题解析可以参考:https://blog.csdn.net/zhaohaibo_/article/details/88783978

2019-11-12

2015年数模国赛b题数据

包含北京、西安、南京、成都四个城市2016年8月6日-12日每日0点-12点内的demand(打车需求量) distribute(出租车分布) money(车费) response(被抢单时间) satisfy(打车难易度) 五种信息

2018-08-26

ACM校赛题解.pptx

ACM校赛

2019-10-26

Iovebecky的留言板

发表于 2020-01-02 最后回复 2020-01-02

考研 计算机和软件工程差别很大吗?

发表于 2019-09-10 最后回复 2019-09-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除