Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
题意:
给定N个数的数组a[N],3种操作:
Add(i, j):a[i] += j
Sub(i, j):a[i] -= j
Query(i, j):返回sum(a[i] … a[j])
单点增加,单点减少,区间查询问题
4月28日重做:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
using ll = long long;
const int maxn = 50010;
struct SegmentTree
{
int l, r;
ll sum;
}tree[maxn<<2];
int a[maxn];
void pushup(int p)
{
tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
}
void build(int p, int l, int r)
{
tree[p].l = l;
tree[p].r = r;
if (l == r)
{
tree[p].sum = a[l];
return;
}
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid+1, r);
pushup(p);
}
void change(int p, int x, int v)
{
if (tree[p].l == tree[p].r)
{
tree[p].sum += v;
return;
}
int mid = (tree[p].l + tree[p].r) >> 1;
if (x <= mid) change(p<<1, x, v);
else change(p<<1|1, x, v);
pushup(p);
}
ll ask(int p, int l, int r)
{
if (l <= tree[p].l && r >= tree[p].r)
return tree[p].sum;
int mid = (tree[p].l + tree[p].r) >> 1;
ll ans = 0;
if (l <= mid)
ans += ask(p<<1, l, r);
if (r > mid)
ans += ask(p<<1|1, l, r);
return ans;
}
int main()
{
int T;
scanf("%d", &T);
for (int cur = 1; cur <= T; cur ++)
{
printf("Case %d:\n", cur);
memset(tree, 0, sizeof tree);
memset(a, 0, sizeof a);
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
build(1, 1, n);
char ops[6];
int x, y;
while (scanf("%s", ops), strcmp(ops, "End"))
{
scanf("%d%d", &x, &y);
if (ops[0]=='Q')
{
if (x > y) swap(x, y);
printf("%lld\n", ask(1, x, y));
}
else if (ops[0] == 'A') change(1, x, y);
else change(1, x, -y);
}
}
return 0;
}
线段树
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 500010;
int a[N];
int tree[N << 2];
void build(int p, int l, int r)
{
if (l == r) {
tree[p] = a[l];
return ;
}
int mid = l + r >> 1;
build(p << 1, l, mid);
build(p << 1 | 1, mid + 1, r);
tree[p] = tree[p << 1] + tree[p << 1 | 1];
}
void change(int p, int l, int r, int x, int num)
{
if (l == r) {
tree[p] += num;
return;
}
int mid = l + r >> 1;
if ( x <= mid ) change(p << 1, l, mid, x, num);
else change(p << 1 | 1, mid + 1, r, x, num);
tree[p] = tree[p << 1] + tree[p << 1 | 1];
}
int ask(int p, int l, int r, int x, int y)
{
if (x <= l && r <= y) return tree[p];
int mid = l + r >> 1;
// case1,全在左半区间
if (y <= mid) return ask(p << 1, l, mid, x, y);
// case2,全在右半区间
if (x > mid) return ask(p << 1 | 1, mid + 1, r, x, y);
// case3, 跨越两个区间
return ask(p << 1, l, mid, x, mid) + ask(p << 1 | 1, mid + 1, r, mid + 1, y);
}
int main() {
int ncase, casenow = 0;
scanf("%d", &ncase);
while (ncase -- ) {
printf("Case %d:\n", ++ casenow);
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i ++ )
scanf("%d", &a[i]);
build(1, 1, n);
char ops[10];
while (scanf("%s", ops) && ops[0] != 'E') {
int x, y;
scanf("%d%d", &x, &y);
if (ops[0] == 'Q') {
if (x > y) swap(x, y);
printf("%d\n", ask(1, 1, n, x, y));
}
else if (ops[0] == 'A') change(1, 1, n, x, y);
else change(1, 1, n, x, -y);
}
}
return 0;
}
树状数组
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 500010;
int n;
int c[maxn];
inline int lowbit(int k)
{
return (k & (-k));
}
void add(int u, int k)
{
while (u <= n)
{
c[u] += k;
u += lowbit(u);
}
}
int ask(int x)
{
int ans = 0;
while (x > 0)
{
ans += c[x];
x -= lowbit(x);
}
return ans;
}
int query(int x, int y)
{
return ask(y) - ask(x - 1);
}
int main() {
int ncase, casenow = 0;
scanf("%d", &ncase);
while (ncase -- ) {
memset(c, 0, sizeof c);
printf("Case %d:\n", ++ casenow);
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ){
int k;
scanf("%d", &k);
add(i, k);
}
char ops[10];
while (scanf("%s", ops) && ops[0] != 'E') {
int x, y;
scanf("%d%d", &x, &y);
if (ops[0] == 'Q') {
if (x > y) swap(x, y);
printf("%d\n", query(x, y));
}
else if (ops[0] == 'A') add(x, y);
else add(x, -y);
}
}
return 0;
}