HDU 1166 敌兵布阵 线段树 单点修改 区间查询

Problem - 1166

Problem Description

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.

Input

第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令

Output

对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。

Sample Input

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End 

Sample Output

Case 1:
6
33
59

题意:
给定N个数的数组a[N],3种操作:
Add(i, j):a[i] += j
Sub(i, j):a[i] -= j
Query(i, j):返回sum(a[i] … a[j])

单点增加,单点减少,区间查询问题

4月28日重做:

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
using ll = long long;

const int maxn = 50010;
struct SegmentTree
{
    int l, r;
    ll sum;
}tree[maxn<<2];
int a[maxn];

void pushup(int p)
{
    tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
}

void build(int p, int l, int r)
{
    tree[p].l = l;
    tree[p].r = r;
    if (l == r)
    {
        tree[p].sum = a[l];
        return;
    }
    int mid = (l + r) >> 1;
    build(p<<1, l, mid);
    build(p<<1|1, mid+1, r);
    pushup(p);
}

void change(int p, int x, int v)
{
    if (tree[p].l == tree[p].r)
    {
        tree[p].sum += v;
        return;
    }
    int mid = (tree[p].l + tree[p].r) >> 1;
    if (x <= mid) change(p<<1, x, v);
    else change(p<<1|1, x, v);
    pushup(p);
}

ll ask(int p, int l, int r)
{
    if (l <= tree[p].l && r >= tree[p].r) 
        return tree[p].sum;
    int mid = (tree[p].l + tree[p].r) >> 1;
    ll ans = 0;
    if (l <= mid)
        ans += ask(p<<1, l, r);
    if (r > mid) 
        ans += ask(p<<1|1, l, r);
    return ans;
}

int main()
{
    int T;
    scanf("%d", &T);
    for (int cur = 1; cur <= T; cur ++)
    {
        printf("Case %d:\n", cur);
        memset(tree, 0, sizeof tree);
        memset(a, 0, sizeof a);
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
        build(1, 1, n);
        char ops[6];
        int x, y;
        while (scanf("%s", ops), strcmp(ops, "End"))
        {
            scanf("%d%d", &x, &y);
            if (ops[0]=='Q') 
            {
                if (x > y) swap(x, y);
                printf("%lld\n", ask(1, x, y));
            }
            else if (ops[0] == 'A') change(1, x, y);
            else change(1, x, -y);
        }
    }
    return 0;
}


线段树

#include <cstdio>
#include <algorithm>
using namespace std;

const int N = 500010;
int a[N];
int tree[N << 2];

void build(int p, int l, int r)
{
    if (l == r) {
        tree[p] = a[l];
        return ;
    }
    int mid = l + r >> 1;
    build(p << 1, l, mid);
    build(p << 1 | 1, mid + 1, r);
    tree[p] = tree[p << 1] + tree[p << 1 | 1];
}

void change(int p, int l, int r, int x, int num)
{
    if (l == r) {
        tree[p] += num;
        return;
    }
    int mid = l + r >> 1;
    if ( x <= mid ) change(p << 1, l, mid, x, num);
    else change(p << 1 | 1, mid + 1, r, x, num);
    tree[p] = tree[p << 1] + tree[p << 1 | 1];
}

int ask(int p, int l, int r, int x, int y)
{
    if (x <= l && r <= y) return tree[p];
    int mid = l + r >> 1;
    // case1,全在左半区间
    if (y <= mid) return ask(p << 1, l, mid, x, y);
    // case2,全在右半区间
    if (x > mid) return ask(p << 1 | 1, mid + 1, r, x, y);
    // case3, 跨越两个区间
    return ask(p << 1, l, mid, x, mid) + ask(p << 1 | 1, mid + 1, r, mid + 1, y);
}

int main() {
    int ncase, casenow = 0;
    scanf("%d", &ncase);
    while (ncase -- ) {
        printf("Case %d:\n", ++ casenow);
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; i ++ )
            scanf("%d", &a[i]);
        build(1, 1, n);
        char ops[10];
        while (scanf("%s", ops) && ops[0] != 'E') {
            int x, y;
            scanf("%d%d", &x, &y);
            if (ops[0] == 'Q') {
                if (x > y) swap(x, y);
                printf("%d\n", ask(1, 1, n, x, y));
            }
            else if (ops[0] == 'A') change(1, 1, n, x, y);
            else change(1, 1, n, x, -y);
        }
    }
    return 0;
}

树状数组

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

const int maxn = 500010;
int n;
int c[maxn];

inline int lowbit(int k)
{
    return (k & (-k));
}

void add(int u, int k)
{
    while (u <= n)
    {
        c[u] += k;
        u += lowbit(u);
    }
}

int ask(int x)
{
    int ans = 0;
    while (x > 0)
    {
        ans += c[x];
        x -= lowbit(x);
    }
    return ans;
}

int query(int x, int y)
{
    return ask(y) - ask(x - 1);
}

int main() {
    int ncase, casenow = 0;
    scanf("%d", &ncase);
    while (ncase -- ) {
        memset(c, 0, sizeof c);
        printf("Case %d:\n", ++ casenow);
        scanf("%d", &n);
        for (int i = 1; i <= n; i ++ ){
            int k;
            scanf("%d", &k);
            add(i, k);
        }
        char ops[10];
        while (scanf("%s", ops) && ops[0] != 'E') {
            int x, y;
            scanf("%d%d", &x, &y);
            if (ops[0] == 'Q') {
                if (x > y) swap(x, y);
                printf("%d\n", query(x, y));
            }
            else if (ops[0] == 'A') add(x, y);
            else add(x, -y);
        }
    }
    return 0;
}

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页